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Growth model with restricted surface relaxation
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~Received 12 July 2002; published 16 December 2002!

We simulate a growth model with restricted surface relaxation process ind51 andd52, whered is the
dimensionality of a flat substrate. In this model, each particle can relax on the surface to a local minimum, as
the discrete surface relaxation model, but only within a distances. If the local minimum is out from this
distance, the particle evaporates through a refuse mechanism similar to the Kim-Kosterlitz nonlinear model. In
d51, the growth exponentb, measured from the temporal behavior of roughness, indicates that in the
coarse-grained limit, the linear term of the Kardar-Parisi-Zhang equation dominates in short times~low-
roughness! and, in asymptotic times, the nonlinear term prevails. The crossover between linear and nonlinear
behaviors occurs in a characteristic timetc which only depends on the magnitude of the parameters, related to
the nonlinear term. Ind52, we find indications of a similar crossover, that is, logarithmic temporal behavior
of roughness in short times and power law behavior in asymptotic times.

DOI: 10.1103/PhysRevE.66.061604 PACS number~s!: 68.35.Fx, 05.70.Ln, 81.10.Aj
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I. INTRODUCTION

Self-affine interfaces generated by nonequilibrium surf
growth have been intensively studied in recent years@1–3#.
Kinetic roughening models as ballistic deposition@4#, Eden
model @5#, solid-on-solid model~SOS! with discrete surface
relaxation@6,7#, SOS with refuse@8#, and SOS with diffusion
@9# are some examples of growth models that belongs
distinct universality classes. Theoretically, these growth p
cesses are studied in three different schemes: through a
tinuum description using Langevin-like equation and ren
malization group analisys for solving it; through numeric
solutions of these equations; and through computer sim
tions of discrete models. The main goal is to obtain the u
versality class of a specific model and to get informat
about the presence of nonlinearities and broken symmet

In computer simulation of lattice growth models, inte
faces are described by a discrete set$hi(t)% which represents
the height of a sitei at the timet. Such an interface hasLd

sites, whereL is the linear size andd is the dimension of the
substrate. The roughness of the interfacev is defined as the
root mean square of the$hi2h̄% distribution,

v2~L,t !5K 1

Ld (
i 51

Ld

~hi2h̄!2L , ~1!

whereh̄ is the mean height at timet and the angular bracket
means the average over independent samples.

The universality class of a discrete growth model is o
tained through the temporal and spatial behaviors of rou
ness. In the most of kinetic roughening processes, wh
starts att50 from a flat substrate, the temporal behavior
roughness is described by the power law behavior,v(L,t)
;tb, when 1!t!t3 , and its spatial behavior, in the stead
state, is described byvsat(L);La, for t@t3 . The expo-
nentsb anda are the growth and roughness exponents,
1063-651X/2002/66~6!/061604~6!/$20.00 66 0616
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spectively, andt3 is the saturation time. These two behavio
are joined at the Family and Vicsek dynamical scaling re
tion @10#

v~L,t !;La f S t

LzD , ~2!

where the functionf (x) must beL-independent. This func-
tion scales asf (x);xb for short times and tends to a con
stant in the steady state. The dynamical exponentz is related
with a andb through the relationshipz5a/b and it shows
how the saturation time depends on the system sizeL: t3

;Lz. Two of these exponents predict which universal
class a model belongs to.

These universality classes are related to the domin
term of the stochastic differential equation in the continuu
limit. In the next section, we describe two stochastic diffe
ential equations which represent two distinct universa
classes. The first is a linear equation proposed, in 1982
Edwards and Wilkinson~EW equation! @6#. The second is a
nonlinear equation, introduced by Kardar, Parisi, and Zha
in 1986 ~KPZ equation! @11#. When the nonlinear term o
this equation is null, the EW linear equation is recuperat

In this article, we report on simulations of a growth mod
with restricted relaxation process~called RR model!, which
was proposed in order to study the crossover between
linear and nonlinear regimes of the KPZ equation. The
combines features of the discrete surface relaxation~DSR!
model@6,7#, related to the EW linear equation, and the Kim
Kosterlitz ~KK ! model @8#, related to the KPZ nonlinea
equation. The crossover between linear and nonlinear
gimes of the KPZ equation was studied numerically ind
51 andd52 through numerical solutions of this equatio
where variations of the amount of nonlinearity was allowe
Moser and Kerte´sz@12# found, ind51, the growth exponen
b51/3 for all values of the nonlinearity. Ind52, the authors
have foundb50.240, close to the Kim and Kosterlitz valu
@8#. So, a crossover between linear and nonlinear regim
was not verified. Grossmann, Guo, and Grant@13# also have
©2002 The American Physical Society04-1
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obtained numerical solutions of KPZ equation where the s
face tension was fixed and the nonlinear parameter was
tinuously changed. For small systems, the authors h
found growth exponents in the interval 1/4,b,1/3. So, the
crossover was characterized by a continuum change in
growth exponent, which ind51 means that the dynamica
exponentz depends on the amount of the nonlinearity. Th
continuous crossover ind51 was also verified by simula
tions on growth models@14,15#. Theoretically, ind51, Nat-
termann and Tang@16# have studied the KPZ equation in th
low nonlinear limit through renormalization group analys
and they have obtained a different result: two behavi
separated by a characteristic timetc . For t!tc , the linear
behavior of roughness was found, while fort@tc , the non-
linearity dominates.

This article is organized in sections. The next section p
sents the general approach for kinetic roughening and
scribes the DSR and KK models. In Sec. III, we introdu
the RR model and we show our results which confirm
theoretical previsions of Natterman and Tang@16# and, in
Sec. IV, we finally show our conclusions.

II. THEORY AND DISCRETE MODELS

In the continuum~coarse-grained! description, the inter-
face motion is described through Langevin-like equatio
@1–3#,

]h~x,t !

]t
5v01h~x,t !1F@h~x,t !#. ~3!

In this equation,v0 andh(x,t) are the deposition rate and i
noise, respectively. This white noise has zero mean and v
ance given by

^h~x,t !h~x8,t8!&5Ddd~x2x8!d~ t2t8!. ~4!

F@h(x,t)# is the term related to the correlations betwe
neighbors which can have linear and nonlinear functions
h(x,t).

Our interest is focused on the discrete surface relaxa
model @6,7# and at the model with restriction@8#. The DSR
model, introduced by Edwards and Wilkinson@6# in 1982, is
a random deposition of particles where the difference
height constraint between the neighbors$j% of a sitei is given
by

hi2h$ j %,M , ~5!

whereM is the parameter that controls the roughness. In
work, we always useM51. If the height of the deposited
particle on the sitei does not satisfy the height constrain
this particle must be moved to a local miminum. Family@7#
have obtained for this model, ind51, the exponentsb
50.25(1) anda50.48(2). This result indicates that thi
model, in a coarse-grained limit, belongs to the universa
class defined by the EW equation

]h~x,t !

]t
5v01h~x,t !1n¹2h~x,t !, ~6!
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where the Laplacian term is related to the surface relaxa
process. The exponents of this linear equation, obtai
through Fourier analysis@6,16#, are b51/4, a51/2 andz
52 for d51. For d52, which is the critical dimension o
Eq. ~6!, these exponents areb5a50 which means that the
roughness has logarithimic behavior in space and timev2

; logt, for t!Lz, andvsat
2 ; logL, for t@Lz). Both, the DSR

model and the EW equation, generate Gaussian height d
butions as well.

In the SOS model with restriction, particles are also ra
domly deposited onto a substrate and the difference of he
constraint is the same of the DSR model, Eq.~5!, but any
kind of relaxation is allowed. If the height of a deposite
particle does not satisfy Eq.~5!, this choice must be refused
that is, the particle evaporates. This model was propose
1989 by Kim and Kosterlitz@8# in order to study nonlinear
kinetic roughening in high dimensions. They numerica
showed, ind51, that this model, named KK model, belong
to the universality class of the well known KPZ equatio
proposed by Kardar, Parisi, and Zhang@11#,

]h~x,t !

]t
5v01h~x,t !1n¹2h~x,t !1

l

2
@¹h~x,t !#2. ~7!

The appearance of the nonlinear term@¹h(x,t)#2 is due to
the lateral growth, that is, the dependence of the growth
locity on a local normal of the growing interface, or to th
appearance of a perpendicular driven force that leads
growth velocity greater or smaller than the deposition r
v0. In the case of the KK model, for example, the refu
mechanism makes the growth velocity smaller than the de
sition rate. Ind51, the exponents of this equation@11# are
b51/3, a51/2 andz53/2. In d52, the analytical solution
is not known. Ind51, numerical simulations of the KK
model@8# indicateb50.332(5) and thea exponent close to
the expected value (a51/2) and, ind52, b50.250(5) and
a50.40(1).

Equation~7! is not invariant under theh→2h transfor-
mation, which means that the up-down symmetry is brok
in surfaces generated by a KPZ process. This fact lead
deviations in the Gaussian character of the height distri
tions which can be measured using other moments of
distribution. Equation~1! can be generalized for any mo
ments of height distribution as

Wq~L,t !5K 1

Ld (
i 51

Ld

~hi2h̄!qL , ~8!

whereq is the order of the moment. Note that the roughne
v(L,t) is related to the second moment:v2(L,t)
5W2(L,t). A growing profile has up-down symmetry whe
positive and negative local curvatures are equals, and, in
case,W3(L,t) vanishes. On the other hand, when asymm
tries are present,W3(L,t)Þ0. The skewness, defined by

S~L,t !5
W3~L,t !

W2
3/2~L,t !

, ~9!
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is the ideal measurement of deviations from Gaussian be
ior. In the case of the DSR model,S(L,t)50 always. For
systems in KPZ class ind51, Krug et al. @17# have indi-
cated uS(L,t)u'0.28 as a universal value in the transie
state. In the steady state, the profile shows a random-w
character, that is, the height distribution is Gaussian
Ssat(L,t@t3)50. In d52, numerical simulations of the KK
model indicateS'20.40, in the transient state, andSsat
'0.28, in the steady state@18,19#.

III. MODEL DESCRIPTION AND RESULTS

In this article, we report on simulations of the grow
model with restricted surface relaxation model~RR model!.
In the DSR model, each incoming particle must search
local minima when the height constraint@Eq. ~5!# is not sat-
isfied. We introduce a parameters that is the number of lat-
tice units allowed for the relaxation process. If the deposi
particle does not find the minimum afters relaxations, then
this choice must be refused, as in KK model. Fors50, the
KK model is recuperated ands→` yields the DSR model.

A. dÄ1 results

Figure 1 shows the log-log plot of roughnessv(L,t) vs
time t for a system withL5105 sites ands52. The time
unity meansLd attempts of deposition. The two straight line
in the figure are showing the power-law fits withb
50.249(1) (1,t,103) and b50.332(1) (103,t,105).
The intersection of these two lines define the crossover t
tc . This crossover is easy to understand considering the
crease of roughness: in short times, when the roughne

FIG. 1. The temporal behavior of the roughnessv(L,t) for the
RR model simulated at a substrate withL5105 sites ands52, in a
log-log plot. The two straight lines are showing the power-law
results withb51/4 ~short times! and b51/3 ~asymptotic times!.
The crossover timetc is defined as the intersection of these tw
lines, as indicated in the figure.
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still small, particles do not need to relax very much f
seaching local minima, so the linear behavior might dom
nate. In large times, on the other hand, we note the app
ance of relaxation lengths bigger than those observed in s
times. As relaxation processes are linked to refuse proce
in this model, the system undergoes a crossover to the n
linear behavior. The crossover timetc is independent of the
system sizeL and it is only a function of the parameters.

For a better understanding of this crossover we study
statistics of relaxations in the DSR model, where relaxatio
of all sizes can occur. At the timet, ^Nk(t)& is the mean
number of particles which diffusedk sites searching loca
minima. So,k relaxations occur with probability

Pk~ t !5
^Nk~ t !&

Ld
. ~10!

These probabilities have an initial temporal dependence
a steady statePk(`), whose values are shown in Table I. W
note a strong decrease of the probability with the numbe
sites diffused, which shows the rare ocurrences of the re
ation with large relaxation lengths.

It is interesting to analyze the approach of this probabi
to the steady state because eachPk(t) has different conver-
gence times. For doing this, we define a normalized proba
ity of k relaxations as

pk~ t !5
Pk~ t !

Pk~`!
. ~11!

Figure 2 shows the plots ofpk(t) vs t for k50;1;2;3;4 for
the DSR model withL5105. Note the differences among th
convergences to each steady state: the temporal behavio
p0 and p1 quickly go to its steady values, whilep2 and p3
tend to unity only att'103 and t'104, respectively. This
fact suggests that large relaxation lengths might occu
large deposition times with small probabilities. So, drawi
attention to the curvep2(t) vs t, we observe that the satura
tion occurs att'103. In the RR model withs52, we esti-
matetc'103, which indicates that the crossover from line
to nonlinear behaviors of the RR model occurs, for a value
s, whenpk5s(t) is time independent.

This behavior ofpk is responsible for the dependence
the crossover timetc with the parameters in the RR model.
Figure 3 shows clearly this dependence with the plots
v(L,t)/tb vs t for ~a! b51/4 and ~b! b51/3, with s

t

TABLE I. The steady state values of probability of diffusionk
sites determined as the mean value in the interval 104<t<105 for a
DSR system withL5105.

k Pk(`)

0 0.5813~3!

1 0.3481~3!

2 0.0616~1!

3 0.00812~2!

4 0.00085~1!

5 7~5!31025
4-3
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50,2,4 andL5105. In ~a!, the curve withs50 always
grows, while the curve fors54 remains constant, indicatin
that b51/4, for this value ofL, is the correct value fors
54 ~DSR behavior! and a noncorrect fors50 ~KK nonlin-
ear behavior!. In ~b! similar conclusions are obtained wit
b51/3. Fors52, the initial linear and the asymptotic KP
behaviors are well observed in~a! and~b!, respectively. Note
that the crossover fors52 occurs when thep2(t) is time
independent, that is, whenp2(t)'1, in Figure 2. Fors54,
we observe only the linear behavior because the total de
sition time is smaller than the crossover timetc .

In order to do a more complete characterization of t
crossover, we also analyze the temporal behavior of

FIG. 2. The temporal behavior of the normalized probability
k relaxationspk(t) for the DSR model withL5105 sites for k
50,1,2,3,4, from top to bottom.

FIG. 3. The log-log plots of temporal behaviors of~a! v/t1/4 and
~b! v/t1/3 for s50,2,4 andL5105. We might observe, fors52,
when the system drives away from the linear behavior in~a! and the
arrival at the nonlinear KPZ behavior in~b!. For s54, the system
must approach the KPZ behavior at a deposition time greater
t5105.
06160
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skewnessS(L,t). Figure 4 shows plots ofS(L,t) vs t for L
5105 and several values of the parameters. For s50, the
skewnessS(t) goes quickly to the KPZ transient valueS5
20.28. As we have explained,SÞ0 means that the inter
faces have no up-down symmetry. We find fors52, a slower
approach to the KPZ value, than observed fors50, indicat-
ing that the up-down symmetry is gradually lost whens
.0. In particular, fors53, we clearly observe an initia
behavior whereS'0 and an approach faster to the KP
value att'104. The temporal dependence ofS(L,t), which
is an independent measurement of the universality class,
indicates an initial linear behavior and the KPZ behavior
asymptotic times.

B. dÄ2 results

It is also interesting to study this crossover ind52, be-
cause changes in the morphology are expected in this dim
sion. For the KK model, we have power-law divergencies
roughness (v2;t0.50 andv2;L0.78), while the DSR model
shows logarithmic divergences (v2; ln t andv2; ln L).

In order to avoid saturation effects, we work withL
52000 (43106 sites!, and we do simulations untilt5104.
Due to the computational cost, we perform only two samp
for each value of the parameters and, consequently, the dat
quality in this subsection is poorer than in the previous s
section. The crossover is analyzed through a similar proc
done ind51. We expect logarithmic behavior when the lin
ear term dominates, so we define

Ys~ t !5
v2~ t !2Bs

Asln~ t !
, ~12!

whereAs and Bs are thes-dependent coefficients obtaine
through a logarithmic regression in the interval 2,t,100.
In Fig. 5, we plot the temporal behavior of the functio
Ys(t), in a semilogarithmic scale. If the temporal behavior

f

an

FIG. 4. The temporal behavior of the skewnessS(L,t) for L
5105 for several values of the parameters. The two horizontal lines
show the valueS50 ~DSR value! andS520.28 ~KPZ value!.
4-4
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the roughness is logarithmic,Ys(t) must be a constant, equa
to one. We note that this occurs fors5`, but, fors51, this
constant behavior remains untilt'102. After this time, there
is a crossover to the power law behavior. However, until
studied time, it is not possible to determine the exponen

In order to verify the existence of a power law behav
with the KPZ exponentb, we need to analyze values of th
parameters smaller thans51, that is, we need to do con
tinuum variations ins. So, we do this by assigning a prob
ability s for the particle relax one lattice unit and a probab
ity (12s) for the particle be evaporated. In Fig. 6, we sho
the graph of v/tb vs t, for s50 ~KK model! and s
50.1,0.3,0.5. In this graph,b51/4 was used which is the
exponent for the KK model ind52 @8#. If the temporal
behavior of the roughness has a power-law behavior w
this exponent, the curves must be horizontal. For the
model (sÞ0), the curves show asymptotic approaches
this nonlinear behavior. For greater values of the paramets,
the crossover time to this behavior occurs for times gre
than the time studied (t5104).

IV. CONCLUSIONS

We have studied the model with restricted surface rel
ation which combines the main features of the model w

FIG. 5. The temporal behavior, in a semilogarithmic scale,
the functionYs(t) for s51 and s5` ~DSR! with L52000.The
dashed horizontal line indicates the constant valueYs(t)51.
-
d
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surface relaxation~DSR model! and the model with refuse
~KK model!. A power-law temporal behavior of roughnes
with two growth exponents was observed ind51: The linear
growth exponent,b51/4, occurs in short times and the no
linear one,b51/3, appears in the asymptotic limit. This re
sult suggests the following description: the linear term of
KPZ equation@Eq. ~7!# dominates in short times and th
nonlinear term dominates in asymptotic times. We also no
that the crossover timetc is independent of the system sizeL
and it is only a function of the parameters. This result cor-
roborates the renormalization group solution made by N
termann and Tang@16#, where the KPZ equation with a sma
nonlinear term was considered. Ind52, we have found in-
dications of the same kind of crossover: A logarithmic te
poral behavior of roughness in short times, which is rela
to the linear EW equation, and a power-law behavior w
b50.25 in asymptotic times, related to the nonlinear KP
equation.
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