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Growth model with restricted surface relaxation
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We simulate a growth model with restricted surface relaxation proceds-th andd=2, whered is the
dimensionality of a flat substrate. In this model, each particle can relax on the surface to a local minimum, as
the discrete surface relaxation model, but only within a distadé the local minimum is out from this
distance, the particle evaporates through a refuse mechanism similar to the Kim-Kosterlitz nonlinear model. In
d=1, the growth exponenB, measured from the temporal behavior of roughness, indicates that in the
coarse-grained limit, the linear term of the Kardar-Parisi-Zhang equation dominates in short(lomes
roughneskand, in asymptotic times, the nonlinear term prevails. The crossover between linear and nonlinear
behaviors occurs in a characteristic tilgevhich only depends on the magnitude of the paramgterlated to
the nonlinear term. Inl=2, we find indications of a similar crossover, that is, logarithmic temporal behavior
of roughness in short times and power law behavior in asymptotic times.
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[. INTRODUCTION spectively, and, is the saturation time. These two behaviors
are joined at the Family and Vicsek dynamical scaling rela-
Self-affine interfaces generated by nonequilibrium surfacéion [10]
growth have been intensively studied in recent y¢ars3|.
Kinetic roughening models as ballistic depositi@t, Eden wel| T
model[5], solid-on-solid mode(SO9 with discrete surface w(L.)~L f(?)’ @
relaxation[6,7], SOS with refus¢8], and SOS with diffusion
[9] are some examples of growth models that belongs tavhere the functiorf(x) must beL-independent. This func-
distinct universality classes. Theoretically, these growth protion scales ag(x)~x” for short times and tends to a con-
cesses are studied in three different schemes: through a costant in the steady state. The dynamical expomésielated
tinuum description using Langevin-like equation and renorwith o and 8 through the relationship= «/8 and it shows
malization group analisys for solving it; through numerical how the saturation time depends on the system kizg,
solutions of these equations; and through computer simula~ L2 Two of these exponents predict which universality
tions of discrete models. The main goal is to obtain the uniclass a model belongs to.
versality class of a specific model and to get information These universality classes are related to the dominant
about the presence of nonlinearities and broken symmetriegerm of the stochastic differential equation in the continuum
In computer simulation of lattice growth models, inter- limit. In the next section, we describe two stochastic differ-
faces are described by a discrete{$g(t)} which represents ential equations which represent two distinct universality
the height of a sité at the timet. Such an interface hds”  classes. The first is a linear equation proposed, in 1982, by
sites, wheré is the linear size and is the dimension of the Edwards and WilkinsotEW equation [6]. The second is a
substrate. The roughness of the interfacés defined as the nonlinear equation, introduced by Kardar, Parisi, and Zhang
root mean square of th@i—ﬁ} distribution, in 1986 (KPZ equation [11]. When the nonlinear term of
this equation is null, the EW linear equation is recuperated.
In this article, we report on simulations of a growth model
1 Ld - with restricted relaxation procegsalled RR mode| which
C,)2(|_,t)=<_d z (hi_h)2>, (1)  was proposed in order to study the crossover between the
L' = linear and nonlinear regimes of the KPZ equation. The RR
combines features of the discrete surface relaxati®R)

o model[6,7], related to the EW linear equation, and the Kim-
whereh is the mean height at timteand the angular brackets Kosterlitz (KK) model [8], related to the KPZ nonlinear
means the average over independent samples. equation. The crossover between linear and nonlinear re-

The universality class of a discrete growth model is ob-gimes of the KPZ equation was studied numericallydin
tained through the temporal and spatial behaviors of rough=1 andd=2 through numerical solutions of this equation
ness. In the most of kinetic roughening processes, whiclvhere variations of the amount of nonlinearity was allowed.
starts at=0 from a flat substrate, the temporal behavior ofMoser and Kertsz[12] found, ind=1, the growth exponent
roughness is described by the power law behavidt, ,t) B=1/3 for all values of the nonlinearity. lth=2, the authors
~1#, when I<t<t, , and its spatial behavior, in the steady have found3=0.240, close to the Kim and Kosterlitz value
state, is described by, (L)~L%, for t>t,. The expo- [8]. So, a crossover between linear and nonlinear regimes
nentsB and « are the growth and roughness exponents, rewas not verified. Grossmann, Guo, and Gidrg] also have
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obtained numerical solutions of KPZ equation where the surwhere the Laplacian term is related to the surface relaxation
face tension was fixed and the nonlinear parameter was coprocess. The exponents of this linear equation, obtained
tinuously changed. For small systems, the authors havéhrough Fourier analysig6,16], are =1/4, a«=1/2 andz
found growth exponents in the interval ¥48<1/3. So, the =2 ford=1. Ford=2, which is the critical dimension of
crossover was characterized by a continuum change in th€q. (6), these exponents afg= a=0 which means that the
growth exponent, which iml=1 means that the dynamical roughness has logarithimic behavior in space and tim@ (
exponentz depends on the amount of the nonlinearity. This~logt, for t<L?, andw?,~logL, fort>L?. Both, the DSR
continuous crossover id=1 was also verified by simula- model and the EW equation, generate Gaussian height distri-
tions on growth modelgl4,15. Theoretically, ind=1, Nat-  butions as well.
termann and Tanffl6] have studied the KPZ equation in the  In the SOS model with restriction, particles are also ran-
low nonlinear limit through renormalization group analysis domly deposited onto a substrate and the difference of height
and they have obtained a different result: two behaviorgonstraint is the same of the DSR model, E5), but any
separated by a characteristic time For t<t,, the linear kind of relaxation is allowed. If the height of a deposited
behavior of roughness was found, while te#t., the non-  particle does not satisfy E¢5), this choice must be refused,
linearity dominates. that is, the particle evaporates. This model was proposed in

This article is organized in sections. The next section pre1989 by Kim and Kosterlit£8] in order to study nonlinear
sents the general approach for kinetic roughening and dédnetic roughening in high dimensions. They numerically
scribes the DSR and KK models. In Sec. lll, we introduceshowed, ind=1, that this model, named KK model, belongs
the RR model and we show our results which confirm theto the universality class of the well known KPZ equation,
theoretical previsions of Natterman and Tad®| and, in  proposed by Kardar, Parisi, and Zhard],
Sec. IV, we finally show our conclusions.

ah(x,t) 5 N )

Il. THEORY AND DISCRETE MODELS ot Lot n(x )+ rVh(x, )+ [Vh(x.O]% (7)

In the continuum(coarse-graineddescription, the inter- . .
face motion is described through Langevin-like equations '€ @Ppearance of the nonlinear teffh(x,t) ] is due to

[1-3] the lateral growth, that is, the dependence of the growth ve-
' locity on a local normal of the growing interface, or to the
ah(x,t) appearance of a perpendicular driven force that leads to a
o~ vot (X )+ Lh(x)]. (3)  growth velocity greater or smaller than the deposition rate

vo- In the case of the KK model, for example, the refuse

In this equationy, and 5(x,t) are the deposition rate and its me_:chanism makes the growth velocity s_maller than the depo-
noise, respectively. This white noise has zero mean and vargition rate. Ind=1, the exponents of this equatiphl] are

ance given by B=1/3, a=1/2 andz=3/2. Ind=2, the analytical solution
is not known. Ind=1, numerical simulations of the KK
(p(xt) (X" ,t")y=D &% (x—x") 8(t—t"). (4)  model[8] indicate3=0.332(5) and thex exponent close to

the expected valuea(=1/2) and, ind=2, 8=0.250(5) and

®[h(x,t)] is the term related to the correlations betweeny=0.4Q0(1).
neighbors which can have linear and nonlinear functions of Equation(7) is not invariant under thé@— —h transfor-
h(x,t). mation, which means that the up-down symmetry is broken

Our interest is focused on the discrete surface relaxatiofh surfaces generated by a KPZ process. This fact leads to
model[6,7] and at the model with restrictiof8]. The DSR  deviations in the Gaussian character of the height distribu-
model, introduced by Edwards and Wilkins8i in 1982, is  tions which can be measured using other moments of the
a random deposition of particles where the difference ofistribution. Equation(1) can be generalized for any mo-
height constraint between the neighbfjsof a sitei is given  ments of height distribution as
by

i=1

Ld

hi—hg,<M, (5) Wq('—:t):<|__1d’2 (hi_ﬁ)q>, ®)
whereM is the parameter that controls the roughness. In this
work, we always uséM=1. If the height of the deposited whereq is the order of the moment. Note that the roughness
particle on the siteé does not satisfy the height constraint, w(L,t) is related to the second momeniw?(L,t)
this particle must be moved to a local miminum. Fanily  =\,(L,t). A growing profile has up-down symmetry when
have obtained for this model, id=1, the exponenty3  positive and negative local curvatures are equals, and, in this
=0.25(1) anda=0.482). This result indicates that this case W;(L,t) vanishes. On the other hand, when asymme-

model, in a coarse-grained limit, belongs to the universalittries are presentVs(L,t)#0. The skewness, defined by
class defined by the EW equation

Wa(L,t)
dh(x,t =
f;t( ):Uo+ 7(x,t)+ vV2h(x,t), (6) LY WAL, ©
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TABLE I. The steady state values of probability of diffusikn
sites determined as the mean value in the interva1&<10° for a
DSR system with. = 10P.

P ()

0.58133)
0.34813)
0.06161)
0.008122)
0.0008%1)
7(5)x10°°

o(L,t)

a b~ wWNEFE O | X

still small, particles do not need to relax very much for
seaching local minima, so the linear behavior might domi-
nate. In large times, on the other hand, we note the appear-
ance of relaxation lengths bigger than those observed in short
s times. As relaxation processes are linked to refuse processes

10 10 10° 10 10 10 in this model, the system undergoes a crossover to the non-
! linear behavior. The crossover tinbgis independent of the
FIG. 1. The temporal behavior of the roughnes.,t) for the ~ SySteém size and it is only a function of the parameter
RR model simulated at a substrate witk 10P sites ands=2, in a For a better understanding of this crossover we study the

log-log plot. The two straight lines are showing the power-law fit Statistics of relaxations in the DSR model, where relaxations

results with 3=1/4 (short time$ and 5=1/3 (asymptotic times ~ Of all sizes can occur. At the timg (N,(t)) is the mean
The crossover time. is defined as the intersection of these two number of particles which diffusell sites searching local

lines, as indicated in the figure. minima. So,k relaxations occur with probability
is the ideal measurement of deviations from Gaussian behav- P.(t) = (N(1)) (10)
ior. In the case of the DSR modeh(L,t)=0 always. For K Ld

systems in KPZ class id=1, Krug et al. [17] have indi-
cated |S(L,t)|~0.28 as a universal value in the transient These probabilities have an initial temporal dependence and
state. In the steady state, the profile shows a random-wali steady state,(«), whose values are shown in Table I. We
character, that is, the height distribution is Gaussian an#iote a strong decrease of the probability with the number of
Seaf(L,t>1,)=0. Ind=2, numerical simulations of the KK sites diffused, which shows the rare ocurrences of the relax-
model indicateS~—0.40, in the transient state, ar@l,, ~ ation with large relaxation lengths.
~0.28, in the steady sta{d8,19. It is interesting to analyze the approach of this probability
to the steady state because e&lit) has different conver-
Ill. MODEL DESCRIPTION AND RESULTS gence times. For doing this, we define a normalized probabil-

' ity of k relaxations as

In this article, we report on simulations of the growth

model with restricted surface relaxation mo@@R mode). D) = P (1) (11)
In the DSR model, each incoming particle must search the k Py(e) "
local minima when the height constraiig. (5)] is not sat- .
isfied. We introduce a parametgthat is the number of lat- Figure 2 shows the plots qf,(t) vst for k=0;1;2;3;4 for
tice units allowed for the relaxation process. If the depositedhe DSR model witti. = 10°. Note the differences among the
particle does not find the minimum aftsrelaxations, then ~Cconvergences to each steady state: the temporal behaviors of
this choice must be refused, as in KK model. Ber0, the Po andp; quickly go to its steady values, while, and p3

KK model is recuperated argi— yields the DSR model. tend to unity only at~10> andt~10", respectively. This
fact suggests that large relaxation lengths might occur at

large deposition times with small probabilities. So, drawing

attention to the curv@,(t) vst, we observe that the satura-
Figure 1 shows the log-log plot of roughnes$L,t) vs  tion occurs at~10°. In the RR model withs=2, we esti-

time t for a system withL=10° sites ands=2. The time matet,~10°, which indicates that the crossover from linear

unity meand_? attempts of deposition. The two straight lines to nonlinear behaviors of the RR model occurs, for a value of

in the figure are showing the power-law fits wit8 s, whenp,_4(t) is time independent.

=0.249(1) (Kt<10® and B=0.332(1) (18<t<10°). This behavior ofpy is responsible for the dependence of

The intersection of these two lines define the crossover timéhe crossover timé. with the parametes in the RR model.

tc. This crossover is easy to understand considering the inFigure 3 shows clearly this dependence with the plots of

crease of roughness: in short times, when the roughness is(L,t)/t? vs t for (a) B=1/4 and (b) B=1/3, with s

A. d=1 results
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FIG. 2. The temporal behavior of the normalized probability of
k relaxationsp,(t) for the DSR model withL=10" sites fork
=0,1,2,3,4, from top to bottom.

=0,2,4 andL=10". In (a), the curve withs=0 always ‘
grows, while the curve fos=4 remains constant, indicating
that 8= 1/4, for this value ofL, is the correct value fos
=4 (DSR behavior and a noncorrect fos=0 (KK nonlin-
ear behavior In (b) similar conclusions are obtained with
B=1/3. Fors=2, the initial linear and the asymptotic KPZ
behaviors are well observed (a) and(b), respectively. Note
that the crossover fos=2 occurs when the,(t) is time =10 and several values of the parameseiFor s=0, the
independent, that is, whemy(t)~1, in Figure 2. Fos=4,  skewnessS(t) goes quickly to the KPZ transient valig=
we observe only the linear behavior because the total depo-0.28. As we have explaine&#0 means that the inter-
sition time is smaller than the crossover time faces have no up-down symmetry. We find $sr2, a slower
In order to do a more complete characterization of thisapproach to the KPZ value, than observedser0, indicat-
crossover, we also analyze the temporal behavior of théng that the up-down symmetry is gradually lost when
>0. In particular, fors=3, we clearly observe an initial

FIG. 4. The temporal behavior of the skewnes ,t) for L
=10° for several values of the paramegeiThe two horizontal lines
show the value&s=0 (DSR valug and S= —0.28 (KPZ valuse.

skewnessS(L,t). Figure 4 shows plots dB(L,t) vst for L

' ' ' behavior whereS~0 and an approach faster to the KPZ
(@ °s=0 value att~10*. The temporal dependence $fL,t), which
;zfi @s an independg_nt measuremen.t of the universality clags, glso
z B indicates an initial linear behavior and the KPZ behavior in
37 1 asymptotic times.
~ 50©
\g oooooo
moooo” i - B. d=2 results
4= de i . It is also interesting to study this crossoverde 2, be-
cause changes in the morphology are expected in this dimen-
, : : sion. For the KK model, we have power-law divergencies of
roughness ¢2~t%°° and w?~ L%, while the DSR model
(b L 5
shows logarithmic divergencesf~Int and w?~InL).
In order to avoid saturation effects, we work with
SR k* =2000 (4x 1P siteg, and we do simulations until=10%,
§ **&& Due to the computational cost, we perform only two samples
-] ek " for each value of the parameteand, consequently, the data
Lo, PR quality in this subsection is poorer than in the previous sub-
***m* section. The crossover is analyzed through a similar process
T done ind=1. We expect logarithmic behavior when the lin-
. . . ear term dominates, so we define
10' 10° 10 10° 10°
t w?(t)— B

Ys(t)=—F7——,

AJn(t) (12

FIG. 3. The log-log plots of temporal behaviors(af w/t** and
(b) w/t* for s=0,2,4 andL=10°. We might observe, fos=2, o .
when the system drives away from the linear behavigajrand the ~ Where As and B are thes-dependent coefficients obtained
arrival at the nonlinear KPZ behavior ). Fors=4, the system through a logarithmic regression in the intervak 2<100.
must approach the KPZ behavior at a deposition time greater thall Fig. 5, we plot the temporal behavior of the function

t=10°. Y4(t), in a semilogarithmic scale. If the temporal behavior of
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FIG. 5. The temporal behavior, in a semilogarithmic scale, of
the functionY(t) for s=1 ands=« (DSR) with L=2000.The
dashed horizontal line indicates the constant vaiye)=1.

FIG. 6. The semilogarithmic graph ef(L,t)/t¥* as a function
of the timet for L=2000 and some values of the parameter

surface relaxatiofDSR model and the model with refuse

the roughness is logarithmi¥(t) must be a constant, equal (KK model). A power-law temporal behavior of roughness
to one. We note that this occurs fee=, but, fors=1, this  With two growth exponents was observediis 1: The linear
constant behavior remains urtti 107. After this time, there ~ growth exponent@=1/4, occurs in short times and the non-
is a crossover to the power law behavior. However, until thdinear one,8=1/3, appears in the asymptotic limit. This re-
studied time, it is not possible to determine the exponent. Sult suggests the following description: the linear term of the

In order to verify the existence of a power law behavior KPZ equation[Eg. (7)] dominates in short times and the
with the KPZ exponenp, we need to analyze values of the nNonlinear term dominates in asymptotic times. We also noted
parameters smaller thans=1, that is, we need to do con- thatthe crossover timg is independent of the system size
tinuum variations ins. So, we do this by assigning a prob- and it is only a function of the parameterThis result cor-
ability s for the particle relax one lattice unit and a probabil- roborates the renormalization group solution made by Nat-

the graph ofw/t? vs t, for s=0 (KK model) and s  nonlinear term was considered. d=2, we have found in-

=0.1,0.3,0.5. In this graph=1/4 was used which is the dications of the same kind of crossover: A logarithmic tem-
exponent for the KK model ird=2 [8]. If the temporal Poral behavior of roughness in short times, which is related
behavior of the roughness has a power-law behavior witt{0 the linear EW equation, and a power-law behavior with
this exponent, the curves must be horizontal. For the RFE8=0.25 in asymptotic times, related to the nonlinear KPZ
model (s#0), the curves show asymptotic approaches tgcquation.
this nonlinear behavior. For greater values of the paranseter
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